Genome-wide characterization of fission yeast DNA replication origins.
نویسندگان
چکیده
Eukaryotic DNA replication is initiated from multiple origins of replication, but little is known about the global regulation of origins throughout the genome or in different types of cell cycles. Here, we identify 401 strong origins and 503 putative weaker origins spaced in total every 14 kb throughout the genome of the fission yeast Schizosaccharomyces pombe. The same origins are used during premeiotic and mitotic S-phases. We found that few origins fire late in mitotic S-phase and that activating the Rad3 dependent S-phase checkpoint by inhibiting DNA replication had little effect on which origins were fired. A genome-wide analysis of eukaryotic origin efficiencies showed that efficiency was variable, with large chromosomal domains enriched for efficient or inefficient origins. Average efficiency is twice as high during mitosis compared with meiosis, which can account for their different S-phase lengths. We conclude that there is a continuum of origin efficiency and that there is differential origin activity in the mitotic and meiotic cell cycles.
منابع مشابه
Cell Timer/Cell Clock
Like the biological clock in the body, replication of each cell type (even different cells of the same organism) follows a timing program. Abnormal function of this timer could be an alarm for a disease like cancer. DNA replication starts from a specific point on the chromosome that is called the origin of replication. In contrast to prokaryotes in which DNA replication starts from a single ...
متن کاملRecent advances in the genome-wide study of DNA replication origins in yeast
DNA replication, one of the central events in the cell cycle, is the basis of biological inheritance. In order to be duplicated, a DNA double helix must be opened at defined sites, which are called DNA replication origins (ORIs). Unlike in bacteria, where replication initiates from a single replication origin, multiple origins are utilized in the eukaryotic genomes. Among them, the ORIs in budd...
متن کاملThe spatial and temporal organization of origin firing during the S-phase of fission yeast.
Eukaryotes duplicate their genomes using multiple replication origins, but the organization of origin firing along chromosomes and during S-phase is not well understood. Using fission yeast, we report the first genome-wide analysis of the spatial and temporal organization of replication origin firing, analyzed using single DNA molecules that can approach the full length of chromosomes. At S-pha...
متن کاملOrganization of DNA replication origins in the fission yeast genome.
Eukaryotic DNA replication initiates at multiple points along the chromosomes known as replication origins (ORIs). We have developed a strategy to identify ORIs directly from replication intermediates in the fission yeast Schizosaccharomyces pombe. Mapping of a selection of the novel ORIs onto the genome reveals their preferential localization at intergenic regions upstream from genes. These re...
متن کاملDNA replication origins fire stochastically in fission yeast.
DNA replication initiates at discrete origins along eukaryotic chromosomes. However, in most organisms, origin firing is not efficient; a specific origin will fire in some but not all cell cycles. This observation raises the question of how individual origins are selected to fire and whether origin firing is globally coordinated to ensure an even distribution of replication initiation across th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 25 21 شماره
صفحات -
تاریخ انتشار 2006